

DATA SHEET 7.1 VERSION 2 28/01/2021

VERFAHREN

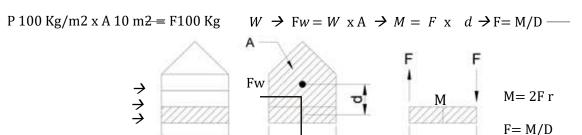
Symaga berechnet die Silos nach den Vorschriften von zwei Vorschriften:

NORMATIV	KORNDICHTE	BÖSCHUNGSWINKEL
ANSI-ASAE EP 433 2003	834 Kg/m3	27º
EUROCODE EN 1991-4	918 Kg/m3	34º

Horizontale (normale) Drücke werden berücksichtigt, durch die Hülse und vertikale (Reibung) durch Verstärkungen zu stützen. Widerstände werden nach Eurocode berechnet.

LASTBERECHNUNG

4 Lasten werden zur Siloberechnung analysiert:


KORN

Folgende angegebene Gleichungen durch ANSI EP 433 2003 und EUROCODIGO EN 1991-4 Vorschriften zur Berechnung des Korndrucks im Silo; die Kräfte sind erworben, denen die Silohülse und Verstärkungen unterliegen.

Die Korndrücke werden beruhend auf Janssen-Formel und den horizontalen und vertikalen Lasten berechnet, die die Silowände tragen, sind von den entsprechenden Koeffizienten jeder angewendeten Vorschrift erworben.

Die Windlast wird durch die Kunden angegeben. Ansonsten berücksichtigt Symaga 100 kg / m2 und einen Expositionskoeffizienten von 0,8. Dieser Winddruck auf denen Silowände führt zu einer Kraft, die ein Kippmoment an der Unterlage der Struktur verursacht. Diese Kraft wird berücksichtigt, durch seine vertikalen Verstärkungen zu absorbieren. Nur die Druckbelastung in den Verstärkungen wird berücksichtigt; weil die Wirkung nicht geeignet für sie ist.

D

Die Schneelast wird durch die Kunden angegeben. Ansonsten berücksichtigt Symaga 80 kg / m2. Diese Last wirkt auf das Dach und wird gleichmäßig direkt auf die Verstärkungen übertragen.

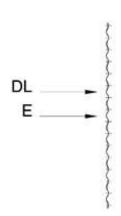
4 EARTHQUAKE

Der seismische Koeffizient wird durch die Kunden angegeben. Andernfalls berücksichtigt Symaga einen seismischen Koeffizienten 0. Die seismische Belastung wird als horizontale Kraft betrachtet, die proportional zum Silogewicht und seiner Kornbelastung ist. Diese Belastung wird in zusätzlichen Hypothesen berücksichtigt, die die Erdbebenswirkungen und die üblichen Belastungen kombinieren. Die seismische Beschleunigung sind die Daten, die die Norm bezüglich des Gebiets (Ort) angeben.

Der seismische Koeffizient ist die Beschleunigung aufgrund der unterschiedlichen Koeffizienten der Zunahme oder Abnahme. Deshalb multiplizieren wir die Masse, um die seismische Kraft zu erhalten.

Wenn wir eine UBC-Zone erhalten, verwenden wir diese Norm zur Berechnung von CS2. Fs=MxCs

D



FILE 7.1 VERSION 1 28/10/2019

HÜLSEBERECHNUNG

Der Hülsewiderstand hat 3 Kriterien:

KRITERIUM	BESCHREIBUNG	BERECHNUNGSVORSCHRIFTEN
Nettoquerschnitt	Elastischer Widerstand der Hülsestahl	UNE-EN 1993-1-1:2013
Schnitt	Schraubenwiderstand an der Dichtungsverbindung	UNE-EN 1993-1-8:2013
Abflachung	Widerstand der Dichtungslöcher, um beim Laden durch Schrauben zu verformen.	ONE-EN 1995-1-8.2013

Dieser Wert wird mit den einwirkenden Kraftwerten auf die Hülse verglichen:

- Horizontalkräfte durch Korn (DL)
- Erdbebenkraft aufgrund der Kornbewegung und des Silo-Eigengewichts (E)

Hülseberechnungen analysieren immer die Verbindungsfestigkeit, weil es der schwächste Punkt ist.

VERSTÄRKUNGSBERECHNUNGEN

SVerstärkungen werden vergleichend den Widerstand ihres Nettoquerschnittes mit den ausgeübten Spannungen und kombinierend gemäß den Vorschriften berechnet.

Die Berechnung der effektiven Teile kaltgeformter Profile erfolgt gemäß der Norm UNE-EN 1993-1-3: 2012. Nach dieser Regel wird das Verstärkungsprofil einer Klasse zugeordnet, mit der seine Elastizitätsgrenze reduziert wird:

- 1. Kunststoff
- 2. Kompakt
- Semikompakt
- 4. Schlank

 ungünstigste

 ungünstigste

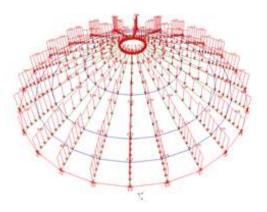
Alle Lasten wirken auf die Verstärkung. Deswegen braucht man die oben beschriebenen Kombinationen 1, 3 und 4 zu analysieren.

BLATT 7.1 VERSION 1 28/10/2019

ZUSAMMENFASSUNG DER LASTEN				
BELASTUNG	ABKÜRZUNG	BESCHREIBUNG		
Dauerlasten	D _L (1)	Permanente Siloladungen. Das Silogewicht und das Gewicht von 150 kg / m Redler über die Silowirkungsbreite werden berücksichtigt.		
Dauerlasten	D _L (2)	Permanente Siloladungen. Das Silogewicht und das Gewicht von 150 kg / m Redler über die Silowirkungsbreite werden berücksichtigt.		
Wind	W	Windlast		
Schnee	S _N	Schneelast		
Erdbeben	Е	Erdbebenlast		

KOMBINATION

Gemäß den Vorschriften werden folgende Belastungszustände analysiert:


ZUSTAND	SILOZUSTAND	ERDBEBEN	KOMBINATION
1	Leeres Silo	Nein	1.35D _L (1) + 1.5W + 1.5 S _N
2		Ja	$D_L(1) + 0.3W + E$
3	Gefülltes Silo	Nein	1.35D _L (2) + 1.5W + 1.5 S _N
4	Geruntes 5110	Ja	$D_L(2) + 0.3W + E$

Zustand 2 wird nicht berücksichtigt, weil: DL(1) < DL(2)

DACHBERECHNUNG

Dächer werden mit Diamanten-Finite-Elemente-Software unter Berücksichtigung der analysierten Lasten berechnet.

